Z88 Workshop 2025

Liebe Freunde von Z88,

erfahren Sie mehr über Finite-Elemente-Analyse und Topologieoptimierung: Online-Workshops zu Z88Aurora® und Z88Arion®

Wenn Sie Ihre Kenntnisse in der Finite-Elemente-Analyse (FEA) und Topologieoptimierung erweitern möchten, bieten unsere Online-Workshops zu Z88Aurora® und Z88Arion® eine passende Gelegenheit!

Der Z88Aurora®-Workshop am 02.04.2025 bietet eine Einführung in die verschiedenen Analyse- und Visualisierungsmöglichkeiten des Programms. Sie lernen, wie Sie lineare und nichtlineare Festigkeiten, Eigenschwingungen und stationäre thermische Analysen durchführen können. Der Workshop behandelt auch wichtige Themen wie Vernetzungstechniken, Randbedingungsdefinitionen, Berechnungsmöglichkeiten, Materialdatenaufbereitung und Ergebnisinterpretation.

Der Z88Arion®-Workshop am 03.04.2025 setzt Kenntnisse in Z88Aurora® voraus und konzentriert sich auf die Topologieoptimierung. Hier erfahren Sie, wie unterschiedliche Algorithmen und Parameter der Optimierung den Designvorschlag beeinflussen. Die im Programm verwendeten Topologieoptimierungsmethoden wie Optimalitätskriterien-Verfahren (OC), Soft Kill Option-Verfahren (SKO) und Topology Optimization for Stiffness and Stress-Verfahren (TOSS) werden ebenfalls erläutert.

Die Workshops Herbst finden als ganztägige Hybrid-Veranstaltungen vor Ort in Räumlichkeiten der Universität Bayreuth statt. Die Mindestteilnehmeranzahl beträgt 5 Teilnehmer. Während der Workshops werden Ihnen die einzelnen Module von Z88Aurora & Z88Arion präsentiert sowie anhand von Beispielen die Benutzung demonstriert. Fragen können dennoch gerne während des Workshops gestellt werden. Zudem können Sie sich im Anschluss an die Workshops gerne per E-Mail mit weiteren Fragen an uns wenden. Weitere Informationen zu den Teilnahmegebühren und der Anmeldung finden Sie unter: https://z88.de/workshops/

Z88Aurora V6 veröffentlicht!

Liebe Z88-Freunde,

wir freuen uns, euch heute die brandneue Version unserer Software, Z88Aurora® V6, vorstellen zu dürfen! In dieser aktualisierten Version haben wir zahlreiche neue Funktionen und Verbesserungen implementiert, um eure Benutzererfahrung weiter zu optimieren.

Zu den Highlights der neuen Version gehört ein innovatives Modul für die nichtlineare Simulation von Sandwichbauteilen, welches die automatisierte Hexaeder-Netzgenerierung für Sandwichstrukturen ermöglicht. Darüber hinaus haben wir neue Materialgesetze eingeführt, wie beispielsweise das anisotrope Hookesche Materialgesetz für die Modellierung von Faserverbundwerkstoffen, Hyperfoam als nichtlineares, hyperelastisches Materialmodell für Weichschäume, Simplefoam als nichtlineares, elastisch-plastisches Materialmodell für Hartschäume und von Mises als nichtlineares, elastisch-plastisches Materialmodell für Metalle.

Ein weiteres Merkmal der neuen Version ist die Integration von nichtlinearem Materialverhalten mit Kontaktbedingungen, sowie Kriterien zur Bewertung von Versagensfällen. Um die Auswertung eurer Simulationen noch effizienter zu gestalten, haben wir zudem die automatisierte Erstellung von Ergebnisberichten ermöglicht.

Wir laden euch herzlich ein, die neue Z88Aurora® V6 selbst auszuprobieren und die vielen Verbesserungen zu entdecken!

Bei Fragen steht wie immer unser Forum oder der E-Mail-Support zur Verfügung.

Euer Z88-Team

contact analysis

Today, the linear static analysis of single components is day-to-day business in simulation. However, the isolated simulation of single parts often is not realistic due to the missing interaction with neighboring components. For this, complex numerical simulations of assemblies (contact analyses) are conducted. The description of mutual interaction corresponds to a nonlinear boundary condition because the state between the contact zones (open or closed) can vary during the calculation. This technical-physical effect appears in nearly every technical system (for example in gear pairings, chain drives, etc.), which is why its consideration is crucial for the result quality.

Z88Aurora

The contact module of Z88Aurora® uses three numerical solvers and has the following properties:

  • Solver
    • Two different preconditioned iterative solvers (SICCG, SORCG) with sparse storage for big finite element structures
    • One direct multicore-solver (PARDISO) with sparse storage for medium- to large-sized finite element structures
  • Available element types
    • Hexahedron No. 1 (linear) & No. 10 (quadratic)
    • Tetrahedron No. 16 (quadratic) & No. 17 (linear)
  • Definition of contact properties
    • Contact type: bonded or frictionless
    • Contact discretization: Node – Surface or Surface – Surface
  • Constraint enforcement methods
    • Lagrange method
    • Perturbed Lagrange method
    • Penalty method
  • Arbitrary component operations (translation, rotation, scaling, duplication) for generating and positioning assemblies
  • Calculation of stresses via three different stress hypotheses:
    • von Mises
    • Rankine
    • Tresca

Z88OS

The use of the contact module is limited to the linear static strength analysis of Z88Aurora®. Z88OS does not have the possibility to conduct contact calculations.

Topology optimization

The topology optimization as a part of the structural optimization helps engineers to design products or single parts to meet the contrived requirements in an optimal way. This can be maximum stiffness with low volume or maximum stability with low mass. Thereby great possible savings can be achived in terms of less application of energy in production, less material usage and less workload in development. These benefits facilitate a kind of construction and production which meets the principle of sustainabilty.
For best use of these possible savings, the topology optimization is applied in the early concept phase of the product development process. Here a great freedom in design exists, which later on has a great influence on the upcoming costs. At the same time the costs for modifications are pretty low.
The effort for a topology optimization is fairly humble. At first the operator defines the available design space for the considered part. Then the location and amount of strain as well as regions in which the part’s shape should not be altered – i. e. drilling holes – are specified. After that an optimization run can be started and the optimization software does the rest.
Depending on the used method and the pursued target, the optimization software gains the required data for processing from a Finite-Element-Analysis (FEA). Among other things, this can be displacements or the part’s stress.
With the help of the FEA data, the structure of the part is altered by variation of the Young’s Modulus of the finite elements. In the process a low Young’s Modulus represents a hole and a high Young’s Modulus describes a solid element. With this new distribution a FEA is performed in the next iteration, at which an element with a low Young’s Modulus shows a fairly flexible behaviour and does not – like a hole – contribute to the stiffness of the structure. At some methods the Young’s Modulus is indirectly determined through another parameter. All variables which are customized by the optimization algorithm are called design variables.
How the Young’s Modulus is modified depends on the used method. The existing techniques can be roughly subclassified in mathematical and empirical methods. For the mathematical optimization the design variables are varied based on a mathematically derived principle leading to optimality. On the other hand, empirical methods change the design variables based on a rule which assumes optimality and generally generate a good result in a short amount of time. Z88Arion® uses methods from both groups.

Linear analysis

In the 50s, the linear finite element method was the starting point for the success story of FEM calculations in praxis.

With this type of calculation, it is assumed that the results are proportional to the loads. Through this assumption the solution of the problem becomes much easier.

Nevertheless, this method has not served out yet. Most of daily life objects deform linear elastic in certain ranges. Therefore the linear FEM is the easiest and fastest method to conduct calculations. It gives important information on component strength and possible weaknesses to the designer.

Z88Aurora

Z88Aurora® offers four numeric solvers for systems of equations for linear static calculations:

  • A direct Cholesky solver with Jennings storage method for small beam and bar structures
  • Two differently preconditioned iterative solvers with sparse storage for large finite element structures
  • One direct multicore solver (PARDISO) with sparse storage for mid-sized finite element structures

These solvers have the following features:

  • 25 integrated finite elements:
    • Structural elements (bars, beams and shafts)
    • Continuum elements (tetrahedrons and hexahedrons) with different shape functions
    • Various special elements (e. g. shells, continuum shells, tori and plates) with different shape functions (linear, cubic)
  • The calculation of stresses can be done via three different stress hypotheses:
    • von Mises
    • Rankine
    • Tresca

Z88OS

With Z88V15OS the following solvers are available for linear static calculations:

  • A direct Cholesky solver with Jennings storage method
  • A spare matrix iterative solver (CG preconditioned) for very large structures

The Z88OS solvers have the following features:

  • 25 integrated finite elements:
    • Structural elements (bars, beams and shafts)
    • Continuum elements (tetrahedrons and hexahedrons)
    • Various special elements (e. g. shells, continuum shells, tori and plates)
    • Various shape functions from linear to cubic
  • Calculation of stresses via three different stress hypotheses:
    • von Mises
    • Rankine
    • Tresca